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We discuss two different schemes for decomposing the magnetocrystalline anisotropy energy into
atomic site-specific contributions, and show that one of these, which uses projected single-particle
states, is inherently ill-defined in practical applications. We therefore argue that the other decom-
position scheme, involving ground state matrix elements of the spin-orbit operator, is preferable for
the numerical prediction of one-site contributions to the anisotropy.

One of the important quantities of interest for perma-
nent magnets is the magnetocrystalline anisotropy energy
(MAE), which is defined at T = 0 to be the difference in
ground state energies:

κ ≡ U i − U j , (1)

where i and j denote spin polarization directions for
which the absolute value of this difference is maximized
(i.e., hard and easy axes, respectively). For typical mag-
netic materials, a nonzero value of MAE is due to the
interplay between the spin-orbit (SO) term in the Hamil-
tonian and the crystal field effect, which causes electronic
eigenstates to be preferentially oriented with respect to
the crystallographic axes [1]. Because the effective poten-
tial corresponding to the SO term is quite local in nature
and concentrated near each ion, it is natural to assume
that the MAE itself can be decomposed into site-specific
contributions [2–4]. This could then in principle aid re-
searchers in predicting how various atomic substitutions
might affect the MAE in a material of interest.

Two different schemes for affecting a site-
decomposition of the MAE have been discussed
and applied. The first uses ground state expectation
values of the SO term, and arises naturally from the
so-called torque method [5], in which the continuous
variation of energy with respect to spin polarization
direction, U(θ), is considered. We will refer to this as
the λ-integration scheme, for reasons that will become
clear. The second uses site-specific projection operators
applied to one-electron states (Kohn-Sham eigenstates
in a typical DFT picture). In Ref.[4], it was pointed
out that these two approaches (or at least approaches
similar to what we describe here) produce qualitatively
different predictions for the relative contributions of Fe
and Pt to the MAE of FePt. We aim to clarify this
difference in this report.

A. λ-integration decomposition scheme

Let us write the Hamiltonian as

Hλ = H0 + λHSO, (2)

where H0 is the Hamiltonian in the absence of spin-orbit
and HSO is the spin-orbit term. Hλ=1 is the true Hamil-
tonian for the physical value of SO. Considering two dif-
ferent spin polarization directions, i and j, the MAE is:

κλ = U iλ − U
j
λ = 〈Ψi

λ|Hλ|Ψi
λ〉 − 〈Ψ

j
λ|Hλ|Ψj

λ〉, (3)

where |Ψi
λ〉 and |Ψj

λ〉 are ground state wave functions
for these different polarizations. From the Hellman-
Feynman theorem [6],

dU i,jλ
dλ

= 〈Ψi,j
λ |HSO|Ψi,j

λ 〉. (4)

Since HSO is strictly local [7], these SO matrix elements
can be decomposed into site-specific terms:

〈Ψi,j
λ |HSO|Ψi,j

λ 〉 =
∑
s,ν,ν′

〈Ψi,j
λ |s, ν〉〈s, ν|HSO|s, ν′〉〈s, ν′|Ψi,j

λ 〉

≡
∑
s

Ei,jSO(s;λ), (5)

where the states |s, ν〉 are localized orbitals centered on
site s, with quantum numbers indicated by the compos-
ite index ν (= px, dx2−y2 , ... ). We have made two
assumptions in Eq.5:

1. 〈s, ν|HSO|s′, ν′〉 ∝ δs,s′ : The locality of HSO, which

arises from its proportionality to 1
r
dV
dr .

2.
∑
s,ν |s, ν〉〈s, ν| = 1: Here, ”1” refers specifically

to the identity operator for vectors in the Hilbert space
spanned by the states in the underlying electronic struc-
ture calculation, whatever they may be (i.e., even a small
collection of localized orbitals for each site).

Using Eqs.4 and 5, the site-decomposed MAE is then:

κ = U iλ=1 − U
j
λ=1 =

∫ 1

0

dλ

[
dU iλ
dλ
−
dU jλ
dλ

]

=
∑
s

{∫ 1

0

dλ
[
EiSO(s;λ)− EjSO(s;λ)

]}
. (6)
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The quantity in curly brackets in Eq.6 is the contribu-
tion to the MAE from the ion at site s. Detailed DFT
calculations of this decomposition using the VASP code
[8] (see below) show that Pt contributes far more than
Fe to the MAE of FePt, which is expected since the SO
term is large for Pt but small for Fe [3, 4]. Note that the
λ-integration scheme requires that |Ψi

λ〉 be determined
self-consistently for each direction i and for every λ, since
the Hellman-Feynman theorem is invoked. However, the
general strategy of relating the MAE to sums of site-
specific SO matrix elements is also possible using pertur-
bation theory, wherein HSO is assumed to be small and
the EiSO(s;λ) are expanded in powers of λ [3].

B. one-electron decomposition scheme

As an alternative scheme, we consider the computation
of MAE from one-electron states. Since HSO is indeed
small relative to H0 in most cases, an accurate rendering
of MAE can often be obtained within DFT by determin-
ing the self-consistent electronic charge density, ρ, in the
absence of HSO, and then adding on HSO as a perturba-
tion (without updating ρ) for each of the two polariza-
tions. In this procedure, both U i and U j are built from
the same ρ, and the force theorem [9] then mandates
that their difference is equal to the difference of occupied
one-electron eigenvalues:

κ = U i − U j ≈
∑
nk

[
f inkε

i
nk − f

j
nkε

j
nk

]
≡ Eiband − E

j
band.

(7)
It might seem at first that a sensible site decomposition
could now be accomplished by including the appropriate
projectors onto localized one-electron states, in a similar
spirit to that discussed above,

Eiband ≈
∑
s

Eisband =
∑
s

∑
nkν

f inkε
i
nk|〈ψink|s, ν〉|2. (8)

The ≈ sign directly above indicates that Eiband contains
contributions outside the atom-centered regions defined
by the |s, ν〉; but these contributions are largely cancelled

in the difference Eiband − E
j
band, as we will demonstrate

below in a concrete example.
However there is a larger problem, which we illustrate

by adding the same arbitrary constant to both U i and
U j , leaving κ unchanged. We write this constant as Nx,
where N (=

∑
nk f

i
nk =

∑
nk f

j
nk) is the total number of

electrons, and x is an energy per electron which can take
on any value. For the total MAE, we have,

κ =

(∑
nk

f inkε
i
nk +Nx

)
−

(∑
nk

f jnkε
j
nk +Nx

)

=
∑
nk

f ink(εink + x)−
∑
nk

f jnk(εjnk + x)

≡ Eiband(x)− Ejband(x)

=
∑
nk

[
f inkε

i
nk − f

j
nkε

j
nk

]
+ x

∑
nk

[
f ink − f

j
nk

]
. (9)

Since
∑
nk f

i
nk = N , the second term on the last line van-

ishes and the arbitrary constant, x, has no effect on the
MAE, as mandated by the cancellation in the first line.
The site-projected band energy with the added constant
is

Eiband(x) =
∑
nk

f ink(εink + x)

=
∑
nksν

f ink(εink + x)
〈
ψink

∣∣s, ν〉〈s, ν∣∣ψink〉︸ ︷︷ ︸
pisνnk

≡
∑
s

Eisband(x), (10)

where s again denotes the site, and

Eisband(x) =
∑
nkν

f ink(εink + x)pisνnk . (11)

The site-projected MAE from the force theorem is now:

Eisband(x)− Ejsband(x) =
∑
nkν

[
f inkε

i
nkp

isν
nk − f

j
nkε

j
nkp

jsν
nk

]
+ x

∑
nkν

[
f inkp

isν
nk − f

j
nkp

jsν
nk

]
. (12)

Unlike in Eq.9, the site-projected MAE for each
individual site s does depend on x, because∑
nkν

[
f inkp

isν
nk − f

j
nkp

jsν
nk

]
does not sum to zero in

practice. Thus, while the total MAE is always well
defined upon adding an arbitrary constant to the energy,
the relative contributions from each site computed in
this way are generally not.

We present a concrete example in Fig.1, which shows
the computed MAE for FePt as a function of the arbi-
trary constant, x. Calculations were performed within
density functional theory using the projector augmented
wave method [10] as implemented in the Vienna ab-
initio simulation package [8]; the exchange-correlation
functional was taken to be the Perdew-Burke-Ernzerhof
GGA form [11]. For Brillouin-zone integrations we used
a Γ-centered 53× 53× 39 k-point mesh; the tetrahedron
integration scheme [12] was employed to determine the
occupation numbers. We used a plane-wave cutoff en-
ergy of 350 eV. The SO integration was included using
the second-variation approach. Solid and long-dashed
lines show the results of the one-electron decomposition
method, while dotted lines (horizontal, independent of
x) show the results of the λ-integration decomposition
scheme. Several points are worth noting: 1. While the
sum of the individual Fe and Pt components determined
by the one-electron scheme (blue solid and long-dashed
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lines) is roughly independent of x, the individual compo-
nents (red and green solid and long-dashed lines) vary
wildly. For small x, κPt > κFe, while the opposite is
true for large x. 2. In addition to the variation with
x, the one-electron decomposition scheme is somewhat
sensitive to the sizes of the integration spheres around
each ion within which the projectors, piαnk, are applied.
This is a result of the contribution from the interstitial
region neglected in Eq.8. Long-dashed lines indicate re-
sults for larger sphere sizes, and solid lines show values
for smaller spheres. Clearly, the larger of the two is the
more appropriate choice here, since the total contribu-
tion (long-dashed blue), κPt + κFe, is less dependent on
x. However, we see that increasing the sphere size does
nothing to reduce the ambiguity of the relative contri-
butions, κPt/(κPt + κFe) and κFe/(κPt + κFe). 3. The
results of the λ-integration scheme (red and green hor-
izontal dotted lines) confirm the expectation that Pt is
the major contributor to the MAE of FePt. Note as well
that the total contribution (κFe+κPt) from λ-integration
(blue horizontal dotted line) agrees quite well with the
total contribution from the one-electron decomposition
scheme when the larger sphere sizes are used.

In summary, we have discussed two different schemes
for decomposing the magnetocrystalline anisotropy en-
ergy into site-specific contributions. While we believe
the λ-integration scheme to be robust, the site-projected
one-electron scheme suffers from an inherent ambiguity
that produces wild swings in the relative contributions,
depending on the degree of completeness of the localized
orbitals on which the projections are defined. This sheds
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FIG. 1: MAE of FePt as decomposed into contributions from
Pt and Fe using the one-electron scheme (invoking the force
theorem), as a function of arbitrary energy shift. The vertical
gray line corresponds to the Fermi level in the 100 direction,
and the horizontal dotted lines indicate the decompositions
determined by the λ-integration scheme. See text for details.

light on the origin of the conundrum outlined in Ref.[4],
and reiterates the view that the decomposition of the
MAE using matrix elements of the spin-orbit operator is
a more robust means for obtaining one-site contributions
to the MAE [3].

In closing, we note that during the later stages of the
preparation of this manuscript, we became aware of the
work described in Refs.[13] and [14], which also clarify
the inefficacy of the one-electron decomposition scheme
for MAE using very similar arguments to those presented
here. For this reason, we elected not to submit this work
for publication in a journal.
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